Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries.
نویسندگان
چکیده
Large-scale electric energy storage is fundamental to the use of renewable energy. Recently, research and development efforts on room-temperature sodium-ion batteries (NIBs) have been revitalized, as NIBs are considered promising, low-cost alternatives to the current Li-ion battery technology for large-scale applications. Herein, we introduce a novel layered oxide cathode material, Na0.78Ni0.23Mn0.69O2. This new compound provides a high reversible capacity of 138 mAh g-1 and an average potential of 3.25 V vs Na+/Na with a single smooth voltage profile. Its remarkable rate and cycling performances are attributed to the elimination of the P2-O2 phase transition upon cycling to 4.5 V. The first charge process yields an abnormally excess capacity, which has yet to be observed in other P2 layered oxides. Metal K-edge XANES results show that the major charge compensation at the metal site during Na-ion deintercalation is achieved via the oxidation of nickel (Ni2+) ions, whereas, to a large extent, manganese (Mn) ions remain in their Mn4+ state. Interestingly, electron energy loss spectroscopy (EELS) and soft X-ray absorption spectroscopy (sXAS) results reveal differences in electronic structures in the bulk and at the surface of electrochemically cycled particles. At the surface, transition metal ions (TM ions) are in a lower valence state than in the bulk, and the O K-edge prepeak disappears. On the basis of previous reports on related Li-excess LIB cathodes, it is proposed that part of the charge compensation mechanism during the first cycle takes place at the lattice oxygen site, resulting in a surface to bulk transition metal gradient. We believe that by optimizing and controlling oxygen activity, Na layered oxide materials with higher capacities can be designed.
منابع مشابه
An advanced cathode for Na-ion batteries with high rate and excellent structural stability.
Layered P2-Na(x)[Ni(1/3)Mn(2/3)]O(2) (0 < x < 2/3) is investigated as a cathode material for Na-ion batteries. A combination of first principles computation, electrochemical and synchrotron characterizations is conducted to elucidate the working mechanism for the improved electrochemical properties. The reversible phase transformation from P2 to O2 is observed. New configurations of Na-ions and...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملUtilizing Co2+/Co3+ Redox Couple in P2‐Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium‐Ion Batteries
Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na0.66Co x Mn0.66-x Ti0.34O2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting struc...
متن کاملBinder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries
Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...
متن کاملLayered Na-Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P- and O-Type Phases.
Herein, the synthesis of new quaternary layered Na-based oxides of the type Na x Mn y Ni z Fe0.1Mg0.1O2 (0.67≤ x ≤ 1.0; 0.5≤ y ≤ 0.7; 0.1≤ z ≤ 0.3) is described. The synthesis can be tuned to obtain P2- and O3-type as well as mixed P-/O-type phases as demonstrated by structural, morphological, and electrochemical properties characterization. Although all materials show good electrochemical perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 139 13 شماره
صفحات -
تاریخ انتشار 2017